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Abstract

Future high energy linear colliders require sophisticated diagnostic tools
for measurement of beam size and position. Diagnostic devices have been
developed according to these specifications. They form parts of the linear
collider test facilities that are presently being commissioned or already
operated in various high energy physics laboratories.

This thesis presents monitoring systems for the longitudinal charge dis-
tribution of the electron pulses. Since the specified short pulse lengths
are at the limit of time resolving electronics, measuring techniques for
the frequency domain have been developed. The experimental techniques
are discussed and measurements presented.

Zusammenfassung

Zukiinftige  Hochenergie-Linearcollider  erfordern  anspruchsvolle
Strahldiagnoseinstrumente fiir die Messung der Strahldimensionen
sowie der Strahlposition. Diagnoseinstrumente wurden diesen An-
forderungen entsprechend entwickelt. Sie bilden Teile der Linearcollider
Testanlagen, die gegenwirtig in mehreren Hochernegiephysiklabors in
Betrieb genommen oder bereits betrieben werden.

Diese  Arbeit stellt Messanordnungen fiir die longitudinale
Ladungsverteilung der Elektronenpulse vor. Da die angestrebten kurzen
Pulsléngen den Grenzbereich zeitauflosender Elektronik darstellen,
wurden Messmethoden fiir den Frequenzraum entwickelt. Die experi-
mentellen Techniken werden diskutiert und Messungen vorgestellt.






Contents

Introduction

1 Radiation from Charged Particles

1.1 Radiation from a Moving Point-Charge . . . . . . .. .. ... ..
1.2 Cerenkov Radiation . . . . . . . . . i i
1.3 Transition Radiation . . . . . . . .. ... ... ... .. .....
1.3.1 Derivation of the Ginzburg-Frank Formulas . . ... . ..
1.3.2 Special Case: Interface Vacuum-Metal . . . .. . ... ..
1.3.3 Normal Incidence: Non-Relativistic Limit . . . . . . . . ..
1.3.4 Normal Incidence: Ultrarelativistic Limit . . . . . . . . ..
1.3.5 Oblique Incidence on a Single Surface . . . . . . ... ...
1.3.6 Oblique Incidence: Non-Relativistic Limit . . . . . . . ..
1.3.7 Oblique Incidence: Ultrarelativistic Limit . . . . . . . . ..
1.3.8 Transition Radiation from a Foil . . . . . . ... ... ...
1.4 Synchrotron Radiation . . . . . ... ... .. ... ... ...,
1.5 Multiparticle Coherence Effects . . . . . ... ... ... .....
1.5.1 Multiparticle Coherence Calculations . . . . . . ... ...
1.5.2 Influence of Transverse Beam Dimensions. . . . . . . . ..
1.5.3 Application to Specific Charge Distributions . . . . . . . .
1.5.4 Application to Various Bunch Lengths . . . ... ... ..

Millimeter-Wave Optics, Devices and Systems
2.1 Signal Detection . . . . . .. . ... o
2.1.1 Photo-Acoustic Power Meter . . . . . . .. ... ......
2.1.2 Pyroelectric Detector . . . . . . ... ... ... ... ...
2.2 Signal Amplification . . . . .. ... oL oL
2.3 Windows . . . . . . . ..
2.4 Flat Mirrors . . . . . . . . . ..
2.5 Roof Mirror Reflectors . . . . . ... ... ... ... .......
2.6 Focusing Elements . . . .. ... ... ... L.
2.7 Filters . . . . . . . e
2.8 Beamsplitters . . . . . . ..o
2.9 Wire Grids . . . . . . . . . .o

iy

oo Co ot Ot

14
14
15
17
18
19
21
23
23
25
25
27



2.10 The Design of Quasi-Optical Circuits . . . . . . . .. . ... ...

Spectrometers for Millimeter Waves

3.1 Filter Spectrometer . . . . . . . .. ... .. L.
3.1.1 High-Pass Filters for Millimeter Waves . . . . .. ... ..
3.1.2 Characterization of Filters . . . . . .. .. ... ... ...
3.1.3 Experimental Setup . . . . ... ... ...
3.1.4  Analysis Algorithm . . . . . ... ... 0L

3.2 Martin-Puplett Interferometer . . . . . . . . . ..o
3.2.1 Fourier Spectroscopy . . . . . . . ..o
3.2.2 Experimental Setup . . . . . ... ...
3.2.3 Analysis Algorithm . . . . . ... ...

Beam Diagnostics using Optical Techniques

4.1 Setup in the DESY Transfer Line . . . . .. ... ... ... ...
4.1.1 Target . . . . . . . . L
4.1.2 Camera and Readout . . . . . .. ... ... ... .....
4.1.3 Calibration . . ... ... ... ... ... .. . ...,
4.1.4 Beam Profile Measurement . . . . . .. ... ... .....
4.1.5 Angular Distribution Measurement . . . . .. .. ... ..
4.1.6 Quadrupole Scan . . . . ... ... .. ... ... ...,

4.2 Longitudinal Bunch Imaging . . . . . ... .. .. ... ...

Beam Diagnostics using Coherent Transition Radiation
5.1 Measurements at the CLIC Test Facility . . .. ... ... ....
5.1.1 The CLIC Test Facility . . . . . . ... .. ... .. ....
5.1.2  Experimental Setup . . . . . . . .. ..o oL
5.1.3 Observation of Coherent Transition Radiation . . . . . ..
5.1.4 Optimization of Bunch Compressor Setting . . . . . . . ..
5.1.5 Observation of Coherence Effect . . . . . . . ... ... ..
5.1.6 Measurements with Filter Spectrometer. . . . . . . .. ..
5.1.7 Streak Camera Measurements . . . . . ... ... ... ..
5.1.8 Comparison of Spectroscopic with Streak Camera Measure-
mentsS . . ... L e e e e e e e
5.2 Measurements at the S-DALINAC Facility . . . ... ... ....
5.2.1 The S-DALINAC Facility . . ... ... ... .......
5.2.2  Experimental Setup . . . . . . . ... oL
5.2.3 Detector Calibration . . . . ... ... ... ... .....
5.2.4 Measurements with Interferometer . . . . . ... ... ..
5.2.5  Comparison of Photo-Acoustic and Pyroelectric Detector .
5.3 Measurements at the TESLA Test Facility Linac . . . . . . . . ..
5.3.1 The TESLA Test Facility Linac . . . . ... ... ... ..
5.3.2 Experimental Setup . . . . . . ... ..o oL



9.3.3
5.3.4
5.3.5
2.3.6
2.3.7

Conclusion

Observation of Coherent Transition Radiation . . . . . . .
Optimization of Machine Setting . . . ... ... ... ..
Estimate of Bunch Length from Energy Spread . . .. ..
Measurements with Filter Spectrometer . . . . . . . . . ..
Measurements with Interferometer . . . . . . .. ... ..

A Properties of Millimeter-Wave Materials

B Electronic Circuits

ITI

103

105

109



vV



List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

1.7
1.8

1.9

Notation used to derive the equations for radiation from a moving
point-chargee. . . . . . .. ... L oL
Point-charge e escaping from a medium with permittivity €, into
vacuum (g, = 1). The emission of forward transition radiation is
indicated by the wave vector k and the electric field vector E. The
observation point is in the vacuum at an angle # with respect to
the velocity of the particle. The problem is symmetric in x and y.
Magnetic and electric fields, that are emitted inside the medium

and reach the observer in the vacuum after refraction at the interface.

Fields contributing to the total intensity radiated into the vacuum
half. E; and Hy are directly emitted in the direction of the ob-

server, E3 and Hj reach the observer after reflection at the interface.

Point-charge e entering a medium with permittivity ¢, from vac-
uum (g, = 1). Backward transition radiation is emitted into the
vacuum at an angle 6 between k and the negative velocity of the
particle. The problem is symmetricinxandy. . ... ... ...
Particle travelling from a medium into vacuum. The particle tra-
jectory is inclined by an angle 1) with respect to the z-axis. . . . .

Projection of the vectors n;, ny, ny and  in the observation plane.

Transition radiation from a metal foil surrounded by vacuum. The
foil is normal to the particle trajectory. Forward transition radia-
tion is centered around the positive z-axis and backward transition
radiation is centered around the negative z-axis. . . . . . ... ..
Transition radiation from a metal foil surrounded by vacuum. The
foil is inclined by an angle 1) with respect to the particle trajectory.
Forward transition radiation is still centered around the positive
z-axis while backward transition radiation is now centered around
the angle of reflection. . . . . . . . ... o o000

1.10 Notation used do derive the formalism for synchrotron radiation. .
1.11 Coherent radiation from an extended electron bunch. . . . . . ..

10

10

13

16
16

20

20
21



1.12 Upper plot: flat distribution with 3.3 ps full length (solid line);
Gaussian distribution with ¢ = 1.65 ps (dotted line); triangular
distribution with 3.3 ps full length (dashed line); double-peak with
3.3 ps full length (dashed-dotted line). Lower plot: corresponding
Spectra. . . . . .. L. e e e e e

1.13 Upper plot: Gaussian distributions with o = 0.825 ps (solid line),
1.65 ps (dashed line) and 3.3 ps (dotted line). Lower plot: corre-
sponding spectra. . . . . . . .. ... oL oL

2.1 Thomas Keating photo-acoustic detector. The radiation is directed
on the input window on either side of the device. The output
voltage is obtained from the BNC connector on top of the detector
head. The two BNC connectors on the left are directly connected
to the foil and used for calibration. The microphone is housed in
the box on top of thecell. . . . . . . .. ... ... .. ......

2.2 Output voltage versus input power for 20 ms long pulses at 7 Hz.
The signal is obtained from an oscilloscope without additional am-
plification. . . . . . .. ..o

2.3 Output voltage versus pulse repitition rate for radiation from a
carbon filament lamp chopped mechanically at variable frequency.
The duration of the light pulses and hence the energy per pulse
also changes corresponding to the change in frequency. . . . . . .

2.4 Relative spectral response versus wavelength for Molectron P2-49
pyroelectric detector. . . . . . . ... .o oo

2.5 Roof mirror arrangement to rotate the polarization of an incoming
beam upon reflection. . . . . . . ... ..o

2.6 (a) Spherical mirror and (b) off-axis paraboloid for focusing of
millimeter waves. . . . . . .. .. ... o

2.7 Metallic mesh patterns: (a) capacitive mesh; (b) inductive mesh;
(c) resonant crosses; (d) Jerusalem crosses. . . . . . ... ... ..

2.8 Calculated efficiency versus wave number for Mylar/Hostaphan
beamsplitters of various thickness at 45°: t = 12 pm (solid line);
t = 23 um (dashed line); t = 36 pum (dashed-dotted line); t = 50 pum
(dotted line). The radiation is assumed to be unpolarized. Absorp-
tion in the Mylar is not included. . . . . . .. . . ... ... ...

2.9 Computed power reflectivity for the components of the electric
field parallel and normal to the wires of a grid. The diameter of
the wires is 20 ym and the spacing is 100 ym. The grid acts as an
ideal polarizer up to a wave number of about 20 cm=t. . . . . ..

2.10 Wire grid from 20 pym tungsten wire at a spacing of 100 ym wound
on a hard paper frame. . . . . . . ... ... oL

2.11 Elements for the design of quasi-optical systems. . . . . . .. . ..

VI

27

35



3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

3.12

4.1

4.2

4.3
4.4
4.5

4.6
4.7

4.8

Circular cutoff waveguide with diameter d. The length is given by
the thickness t of the plate and chosen at twice the diameter of the

Cutoff wave number spectrum for a 1 mm diameter circular wave-
guide. . . . Lo
Geometry of a high-pass filter for millimeter waves. . . . . .. ..
High-pass filter with cutoff wave number 7, = 5.86 cm™t. . . . . .
Measured transmission (arbitrary units) versus frequency in the
cutoff region for a filter with nominal cutoff wave number 7, =1 ¢cm™
(B0 GHz). . . . . .
Measured transmission versus wave number for filters with nominal
cutoff frequencies 7, = 2.93 cm™ and 7, = 5.86 cm™*. . . . . . . .
Experimental setup of the filter spectrometer with photo-acoustic
detector. . . . . . . .. L
Quasi-optical diagram of a two-arm Michelson interferometer.
Quasi-optical diagram of the Martin-Puplett interferometer.
Experimental setup of the Martin-Puplett interferometer with pho-
to-acoustic detector. . . . . ... ..o
The modulus squared of the Fourier transform of a pulse f(t)
equals the Fourier transform of its autocorrelation function.

Pulse shape (upper left plot) and autocorrelation function (upper
right plot). After applying a high-pass filter, which corresponds
to a differetiation, the pulse shape changes (lower left plot). The
corresponding autocorrelation function (lower right plot) has the
same shape as the measured interferograms (see Chapter 5).

1

Setup for measurement of optical transition radiation in the DESY
transport line. . . . . . .. ..o Lo L L
Beam position on the CCD versus offset produced by dipoles in x
and y. The fit yields a calibration factor of 38.34 [px/mm] for the
horizontal and 30.54 [px/mm]| for the vertical calibration . .
Optical setup to image the beam profile on a CCD. Different loca-
tions on the OTR foil correspond to different places on the CCD.
Typical beamspot obtained with optical transition radiation in the
DESY transfer line. . . . . . .. ... ... .. ... .. ... ...
Typical horizontal beam profile measured in the DESY transfer line.
Typical vertical beam profile measured in the DESY transfer line.
Two alternative setups to measure the angular distribution of op-
tical transition radiation. Different angles of emission correspond
to different places on the CCD. . . . .. ... ... ... .....
Quadrupole scan using the QR43 quadrupole. The solid line is a
fit through the measured points, the dashed line is the theoretical
expectation. . . . . . . . ...

VII

62

66

68
69
69

70
70

73



4.9 Quadrupole scan using the QR12 quadrupole. The solid line is a
fit through the measured points, the dashed line is the theoretical
expectation. . . . . .. ..o

4.10 Principle of a streak camera as used at LEP. . . . . . .. ... ..

4.11 Top and side view of an electron and a positron bunch in LEP
observed with a streak camera. Successive turns of the same bunch
in the machine are displayed. . . . . .. ... ... ... ... ..

4.12 Setup to determine time resolution and fast sweep calibration of a
streak camera. . . . . . .. ... Lo

5.1 Schematic view of the CLIC test facility as operated in 1995. NAS:
3 GHz acceleration section; TRS: 30 GHz transfer structure; CAS:
30 GHz acceleration structure. . . . . . . .. ... ...
5.2  Detector output from a train of 24 bunches. The oscilloscope shows
voltage versus time. The total time axis is 10 ms. The upper
curve represents the total signal while the lower curve is the pure
transition radiation signal after background subtraction. . . . . .
5.3 Left plot: detector output versus total beam charge for different
numbers of bunches in a train. The first value is taken with one
single bunch, then bunches are added successively until the train
consists of 12 bunches. Right plot: detector output versus total
beam current for increasing single-bunch charge. The number of
bunches in the train is kept constant to24. . . . . . .. ... ...
5.4 Spectral intensity versus wavenumber for non-optimized machine
setting. A Gaussian fit yields ¢ = 3.12 ps (dashed line). . . . . . .
5.5 Spectral intensity versus wavenumber for optimized machine set-
ting. A Gaussian fit yields ¢ = 2.18 ps (dashed line). . . . . . ..
5.6 Single-shot streak camera measurement of a 3.1 ps bunch at the
CLIC test facility. . . . . . . . .. ... .
5.7 Streak camera measurements for optimized (triangles) and non-
optimized (circles) machine setting. The single-shot measurements
were superimposed and the rms bunch length determined. A Gaus-
sian fit yields a bunch length of 3.55 ps (solid line) and 2.6 ps
(dashed line) respectively. . . . . . ... ... ... ... ... ..
5.8 The S-DALINAC recirculating accelerator. . . . . . . .. ... ..
5.9 Calibration of the photo-acoustic detector with the boxcar inte-
grator as used for measurements at the S-DALINAC facility. . . .
5.10 Interferometer scan with pyroelectric detector and power spec-
trum. A Gaussian fit applied to the spectrum yields a bunch length
of 0 = 2.46 ps in the time domain. . . . . .. ... ... ... ..
5.11 Interferometer scan with photo-acoustic detector. Each point is
averaged over 60 s. The signal to noise ratio is too bad to obtain
information from the spectrum. . . . . ... ... ... ... ...

VIII

74



5.12
5.13

5.14

5.15

5.16

5.17

5.18

Al

A2

A3

B.1
B.2
B.3

B.4

Setup of the TESLA test facility at DESY. . . . . .. .. ... ..
Output voltage of the photo-acoustic detector viewed on an oscil-
loscope. . . . . L
Output of photo-acoustic detector versus beam current. The ex-
pected non-linear dependence can clearly be seen. . . . . . . . ..
Total output of photo-acoustic detector versus buncher setting. At
the setting with the shortest possible bunch length, the detector
signal has its maximum. . . . . .. ... Lo
Spectrum of coherent tranistion radiation measured with the filter
spectrometer. A Gaussian fit applied to the spectrum yields a
bunch length of 0 = 2.76 ps in the time domain. . . . . . . . . ..
Autocorrelation of TTFL bunches. The detector output is plot-
ted versus the optical path length difference of the interferometer
arms. The solid line shows the measured data, the dashed line is
a ploynomial fit which suppresses high frequent noise. . . . . . . .
Spectrum calculated from the measured autocorrelation. The low
frequency cutoff is found at 7 ~ 3 cm™' (vertical dashed line).
The circles represent the data obtained from the Fourier trans-
form, the solid line is a Gaussian fit. Assuming a Gaussian charge
distribution, the fit yields o =2 ps. . . . . . . ... ... ... ..

Transmission of selected window materials. 1: quartz, crystalline,
10 mm; 1a: quartz, crystalline, 1 mm, 4 K; 1b: quartz, crystalline,
1 mm, room temperature; 2: diamond Ila, 1 mm; 3: sapphire,
1 mm; 4: quartz-glass, l mm. . . . ... ... ... ... ..
Transmission of selected window materials. 1: PTFE (teflon),
0.95 mm; 2: HDPE, white, 1 mm; 3: TPX, 3 mm; 4: PE, black,
O0.lmm. . .. .. .
Transmission of selected window materials. 1: MgF,, 2 mm; la:
MgF,, 1 mm; 2: CdFy, 5 mm; 3: CaFs, 1 mm; 3a: CaF,, 1 mm,
4 K; 3b: CaF;, 3.5 mm; 4: PbF;, 2 mm; 5: CdS, 2 mm. . .. ..

Amplifier with integrated universal bandpass filter. . . . . . . ..
Amplifier without filter. . . . . . . .. ... ... oL
Block diagram for calibration of the photo-acoustic detector. A
square wave current is generated and passed through the foil of
the detector. It is monitored on an oscilloscope. The detector
output is amplified and monitored on the other channel of the
oscilloscope. The calibration procedure is described in Chapter 5.
Block diagram for transfer of the detector signal to the control
room. The detector output is amplified in the accelerator tunnel.
The analog signal is then passed to the control room via a shielded
twisted-pair cable. . . . . . . ... .. oL

112






List of Tables

2.1

2.2

3.1
3.2

5.1

Al
A2
A3

Nominal and calibrated parameters of the Thomas Keating photo-
acoustic detector. . . . . . . ... L
Nominal and calibrated parameters of the P2-49 pyroelectric de-
tector. . . . . . . L e e

Nominal parameters for a set of high-pass filters. . . . . . . .. ..
Measured parameters of a set of filters. The diameter of the holes

on either side of the filter is d, and dj, the average diameter is d,,.

Comparision of bunch length obtained from the coherent transition
radiation spectrum and from a streak camera. . . . . .. ... ..

Properties of selected window materials. . . . ... ... ... ..
Properties of selected window materials. . . . ... ... ... ..
Properties of selected window materials. . . . ... ... ... ..

XI






Introduction

With the operation of LEP! at a center of mass energy of 200 GeV, the limit
for circular eTe™ accelerators will be reached. In order to extend the physics of
electron-positron annihilation to higher energies, the development of linear col-
liders is crucial.

Hadron colliders are well suited for explorative studies since they cover a wide
energy range. However, to understand new physics and new particles, detailed
studies at ete™ colliders are essential. A fine example is the discovery of the
J/W¥ as narrow resonance J in hadron collisions in Brookhaven. Its interpretation
as a charm-anticharm state ¥ was only possible due to detailed studies at eTe™
storage rings.

Electron-positron annihilation has the immense advantage, that the parameters
of the initial state are very well defined. Electrons can be considered as point-
like particles down to 1078 m. Their energy, polarization etc. can be measured
with high precision. The event topology of eTe™ collisions is simple compared to
hadronic collisions. Hadrons consist of quarks and gluons. Their momentum is
distributed among the constituents according to the structure functions. Hence
the initial state is not well defined. In addition, proton-proton collisions produce
an immense hadronic background. A typical event at the 14 TeV pp collider
LHC? will contain several hundred hadronic tracks and, moreover, the high de-
sign luminosity of 103* cm2s~! will result in the superposition of about 25 events
per bunch crossing. The search for rare events is therefore an extremely difficult
task.

While in the case of eTe™ collisions the experiments and the analysis are much
easier, here the accelerator itself is a very challenging project. Storage rings with
a higher center of mass energy than LEP cannot be operated at reasonable costs,
since losses due to synchrotron radiation increase dramatically. The alternative
route was first proposed by M. Tigner in 1965 [1]: electrons and positrons from
two linear accelerators are brought to head-on collision. This idea has been thor-
oughly studied during the last years by working groups all over the world. The

!Large Electron Positron Collider
2Large Hadron Collider



first working high energy ete~ linear collider was the SLC? machine which is
presently running at a center of mass energy of 91 GeV. Building a machine with
a center of mass energy of 500 GeV and a luminosity of 10%* cm? s~ would be
a first step towards TeV energies. Such a machine could be used for detailed
studies of the top quark system, for finding or excluding the Higgs boson up to
a mass of about 350 GeV and for the search for supersymmetric particles.

Various technical approaches to the problem of a high energy e*e™ linear col-
lider are presently being evaluated with respect to their feasibility at reasonable
costs. They differ mainly in accelerating frequency, time structure and beam
dimensions. Conventional, normalconducting accelerating structures such as the
3 GHz technology already used at SLC, can be extrapolated as proposed for
the SBLC*. Higher frequencies are envisaged for the NLC®, JLC® and VLEPP?
machines. The wakefield accelerator CLIC® is to be operated at 30 GHz. The
TESLA? design is the only linear accelerator based on superconducting cavities.
Its accelerating frequency of 1.3 GHz is comparatively low [2].

Test facilities for linear accelerators are presently being commissioned or already
operated in various high energy physics laboratories. The layout of these pro-
totype linacs should resemble that of a future 500 GeV machine as closely as
possible. Measuring the parameters of the electron beam will then show if the
specifications can be achieved.

In addition to the high energy physics potential, some machine designs offer the
possibility to drive a free-electron laser (FEL). Such a high-brillance X-ray source
is proposed for example both for the TESLA test facility linac (TTFL) [3] as well
as for the TESLA machine [2]. Beam parameters such as bunch dimensions,
bunch charge and emittance are in this case even more important and the toler-
ances tighter than for the high energy physics option. If the beam does not fulfill
these very strict requirements, a free-electron laser will not work at all.

Beam diagnostics has been developed for the TESLA test facility to determine
the beam emittance, current, position and dimensions. These devices are in-
stalled at the TESLA test facility linac to monitor its performance. Some of the
beam monitors themselves, for example the bunch length monitors, had to be
developed and are therefore themselves subject to experiments.

3Stanford Linear Collider

4S-Band Linear Collider

5Next Linear Collider

6 Japanese Linear Collider

"Vstrechnie (Colliding) Lineinye (Linear) Electron Positron Puchki (Beams)
8Compact Linear Collider

9TeV Energy Superconducting Linear Accelerator



One possibility to obtain information about the bunch size is the use of tran-
sition radiation. The optical part of its spectrum can be used to measure the
transverse beam profile. As an example for its application to beam diagnostics,
a setup for optical transition radiation at a particle accelerator is presented and
some possible measurements are discussed.

To obtain the bunch length, time resolving techniques (streak cameras) can be
used. For the short bunch length of an electron linear accelerator, the resolution
limit of streak cameras is reached. If measurements in the time domain are no
longer possible, a principally different measurement technique must be applied.
The alternative is to measure in the frequency domain rather than in the time
domain. This method is based on the fact that the long wavelength part of the
radiation spectrum of a bunch carries the information about the bunch length
and shape. This argument holds for wavelengths of the order of the bunch length
and longer. The experimental problem is then the measurement of spectra in the
long wavelength range. For bunches of a few picoseconds, the relevant part of the
spectrum is found at wavelengths of several millimeters. For shorter bunches as
proposed for FEL option, the wavelength range shifts to the far-infrared. Since
spectroscopy becomes easier at shorter wavelengths, these methods work the bet-
ter the shorter the bunches are.

In this thesis, transition radiation has been used for electron beam diagnostics.
First the formalism for radiation processes due to a moving point charge as well
as for a bunch of charged particles is developed. Quasi-optical techniques for elec-
tromagnetic radiation at wavelengths of several millimeters are presented. Two
types of spectrometers for millimeter waves have been developed for use at the
TESLA test facility linac. They are described in Chapter 3. Chapter 4 deals with
the application of radiation in the optical frequency range for beam diagnostics.
A setup was built in the DESY transfer line to evaluate the potential of transition
radiation for optical diagnostics. Measurements of the transverse beam param-
eters are presented. Chapter 5 deals with the application of millimeter-wave
radiation to beam diagnostics. These measurements refer to the longitudinal
bunch dimension. Bunch length measurements carried out at the CLIC test fa-
cility at CERN, at the S-DALINAC facility in Darmstadt and at the TESLA test
facility at DESY are presented.






Chapter 1

Radiation from Charged Particles

Electromagnetic radiation is emitted by charged particles under various circum-
stances. These various sorts of radiation, although similar in certain aspects,
are due to entirely different physical processes and each of them requires specific
formal treatment.

Synchrotron radiation is the only kind of radiation that can be emitted while the
particle is travelling in vacuum. This happens only if the particle is accelerated.
If a particle travels at constant speed in a homogeneous medium, Cerenkov ra-
diation is the only form of radiation that can be emitted. This happens under
the condition, that the velocity of the particle is larger than the phase velocity
of light in the medium (Cerenkov condition). If the medium is not homogeneous
or varies in time, transition radiation is emitted. This kind of radiation is due to
boundary conditions at the interface of media with different dielectric properties.

1.1 Radiation from a Moving Point-Charge

Consider a point-charge e moving on an arbitrary trajectory r(t) at arbitrary
velocity v(t) in a homogeneous and infinite medium with permittivity €,. The
following treatment is based on the Liénard-Wiechert potentials for a moving
point-charge that are derived in textbooks, e.g. [4]. We will only consider the
case sketched in Fig. 1.1, where r < Ry (far-field approximation):

R~ Ry—r-n. (1.1)

In this case, the vectors E and H at the observation point are transverse and the
Poynting vector S is directed along n:

S = ExH
Ho
= %|H\2n. (1.2)



Observer

rt) e

Figure 1.1: Notation used to derive the equations for radiation from a moving
point-charge e.

The vector potential A is given by the Liénard-Wiechert potential':

foecB
A(r,t) = 1.3
00 = | ] (1.3
It is convenient to consider the spectral decomposition of A(r,t):
Aw) = ,uoec/ p exp{iwt}dt. (1.4)
82 (1-y&B-n)R] .
We now make the substitution
R(t")
t =t 1.5
* c/\/er (1.5)
Sdt = dff + Y dR(L) 3y
c dt

= (1—\/5[‘3 n)dt

and obtain using (1.1)

'quC/—exp{z (wt' + fRo @r-n)}dt'. (1.6)

We can then make the simplification that the term (Ry — r - n) ! varies very

W/

slowly compared to exp{—i="n-r}:

oec 1
871'2 Ro

Alw) = exp{ "V Ry} [ Bexpiut - MT\/an-r(t’))}dt’. (1.7)

!The derivation is based on the vector potential for the magnetic field which makes the
calculation more convenient than in the case of the electric field.



To simplify this expression we define the wave vector k by

K= Ve, (1.8)

C
and write ¢ instead of ¢':
k-
Aw) = % eXp{’ RO} [ Bexp{itut — K x(t)}at. (1.9)
T

From this, H(w) can be obtained:

H(w) = iv X A(w)
- %exp{i;o- Ro} iw\c/a /(n x B) exp{i(wt — k - r(t)) }dt. (1.10)

We obtain then a general equation from which the radiated energy per unit fre-
quency and unit solid angle for the various radiation processes can be calculated?:

2w ,
waa — °R
Ho 2 2
n/ 22 H@P R
_ SuhVE . 2
T 16m%ec /(nxﬁ)eXP{’(wt k-r(t)}ydt| . (1.11)

Equation (1.11) is a fundamental equation for all radiation processes caused by
a moving point-charge in the far-field approximation.

Starting from this, now the special case of uniform and linear motion with
r(t) = vt will be considered. Using

|n x B| = Bsinf (1.12)
and
k- r(t) = wt(B/e, cosh), (1.13)
( 1.11) can be written as
d2W 2\/5 ) 2
Toda 16%3600 3 sin? § ‘/exp{zw(l — B\/e, cos B)t}dt| . (1.14)

The integration boundaries have to be set according to the specific problem.
Starting from (1.14) we will now consider various radiation processes in detail.

2Note, that only positive frequencies have a physical interpretation and therefore
[ =P dt = 4n [° [H(w)[? dw.



1.2 Cerenkov Radiation

Cerenkov radiation is the only kind of radiation that can be emitted by a charge
with uniform and linear motion in a homogeneous, infinite medium.

The case of an infinite trajectory corresponds to evaluating the integral in (1.14)
from -oo to 4o0:

2

d2 2 92 " +T/2
W _ew \/8_52 sinzeTlim ‘/ / exp{iw(l — By/e, cosO)t}dt) . (1.15)
—0 |J-T/2

dwdQ  16m3e4c

For |T'| — oo, the integral yields
2nTw™'6(1 — By/r cos ) (1.16)
and the radiated power is given by

d’P  €w\/e
dwdQ  8m2eqc

B sin® 0 §(1 — B+/g, cos ). (1.17)

The delta function determines the Cerenkov angle:

1

Ve

cosf = (1.18)

Radiation is only emitted if

) 1.19
= (1.19)
that is if the velocity of the particle is higher than the velocity of light in the
medium (Cerenkov condition).

1.3 Transition Radiation

Transition radiation is emitted as a charged particle moves through or close to
an inhomogeneous medium or if the medium varies in time. A purely formal
derivation of the equations for transition radiation can be found in e.g. [5], [6],
[7]. In order to provide a more intuitive physical derivation rather than solving
Maxwell’s equations with boundary conditions, the relevant formulas are here
developed following [8].

1.3.1 Derivation of the Ginzburg-Frank Formulas

The here relevant case, that a point-charge moves from a medium with permittiv-
ity £, to vacuum (g, = 1) can be treated analytically (the inverse process follows
directly as will be seen). We will in the following derivation assume that the

8



E
k H
) v 5 z
e
medium vacuum
g >1 =1

z=0

Figure 1.2: Point-charge e escaping from a medium with permittivity ¢, into
vacuum (g, = 1). The emission of forward transition radiation is indicated by
the wave vector k and the electric field vector E. The observation point is in the
vacuum at an angle # with respect to the velocity of the particle. The problem
is symmetric in x and y.

velocity of the particle is uniform and linear and that the Cerenkov condition is
not fulfilled. The velocity v of the charge is taken to be normal to the interface,
say along the z-axis as sketched in Fig. 1.2.

It is convenient to treat the two half spaces seperately. The equations for the
fields and the radiated energy have to be integrated from 0 to +oco for the right
half space (vacuum) or from -oco to 0 for the other half space (dielectric or metallic
medium).

Let us consider the right half space in Fig. 1.2. The total magnetic field observed
at a large distance is given by the superposition of three contributions:

H(w) = Hi(w) + Hy(w) + H3(w). (1.20)

As sketched in Fig. 1.3 and 1.4, Hy(w) is the magnetic field of the wave that is
emitted into the vacuum after refraction at the interface, Hy(w) is the field of the
wave directly emitted in the vacuum and Hjz(w) is the field of the wave that is
emitted in the vacuum and reaches the observation point after reflection at the
interface.

H,(w) can directly be obtained by integrating (1.10) from 0 to 400 with €, = 1:

k
H, (i) — e exp{iko

. RO} ) 00 '
= SnZc Ry %W/O (ng x v)exp{i(w — ko - v)t}dt.  (1.21)



medium vacuum
£ >1 £ =1 H
N1
nl !
8 o Eq

X \Y; z

1B

0o

=0

Figure 1.3: Magnetic and electric fields, that are emitted inside the medium and
reach the observer in the vacuum after refraction at the interface.

Figure 1.4: Fields contributing to the total intensity radiated into the vacuum
half. E, and H, are directly emitted in the direction of the observer, E3 and Hj3
reach the observer after reflection at the interface.
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The field H3(w) is given by a corresponding expression multiplied with the re-
flection coefficient r) for a magnetic field orientated in the plane of incidence:

e exp{iks - RO}
8m2¢ Ry

erc080 — /e, —sin? 0 (1.23)
7‘|| = . .
g, cosf +1/e, —sin? 0

More care must be taken with the calculation of the field H;, which reaches the
observer after refraction at the interface as sketched in Fig. 1.3.

Hg(w) = T|| .

(n3 x v)exp{i(w — ks - v)t}dt, (1.22)

where

We first calculate the electric field due to a moving charge in the vacuum. Its
amplitude in the vacuum is given by

E = cuoH, (1.24)
where H is given by
e exp{zkg RO}

872c

H(w) =

—(ng X v)exp{i(w — ko - v)t}dt.  (1.25)

The electric field is emitted into the medium in direction of —n,, undergoing
refraction at the interface. Its amplitude is obtained by multiplying the field in
the vacuum with the Fresnel coefficient ¢ /,/¢, for the transmitted magnetic field
orientated perpendicular to the plane of incidence, where

2¢, cos ©

£,c080 + /e, —sin? O

1+ T = t”. (1.27)

b= (1.26)

and

The inverse process, that a moving charge inside the medium causes a field in
the vacuum, can now be calculated using the reciprocity theorem [6]:

if j4 and jp are current densities at points A and B, and E4(B) is the field due
to ja at point B and vice versa, then we have

/ JuER(A)dVy = / jsEA(B)dVs. (1.28)

For the problem discussed here, the current densities in the medium and in vac-
uum are

ja=jp=ev. (1.29)
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We have calculated the amplitude of the electric field Ej in the medium, and can
therefore obtain the amplitude of the electric field E; at the observation point.
Taking into account the angle of refraction we obtain

IE,|sinf = |Eo|sin ¢, (1.30)
where

Ing x v| = wvsiné'

In; x v| = wvsiné. (1.31)

We obtain then the field E; at the observation point. Using (1.24) the magnetic
field H; is given by
t e exp{iko- Ro}

H,(w) = \/587T . R, ; (n1 x v) exp{i(w — ko - v)t}dt. (1.32)

We have now calculated all three fields that contribute to the total magnetic field.
From the total magnetic field, the radiated energy per unit frequency and unit
solid angle is obtained according to (1.11):

d*W Amr 2
H H H ?
T = T JH0) 4 Fa) + () B
2
e?3%sin? § 1 oy (1.33)
1673¢4c 1—50050 1+ﬂcos€ Er1- 3 /sr—sm 0

Using the expressions for the Fresnel coefficients as given above, one obtains for
the intensity radiated into the right half space (vacuum):

(e, —1)(1 — B2 — By/e, — sin?0)
(e, cosf + y/e, —sin? ) (1 — B4/e, — sin” f)

1 (1.34)
Here, 6 is the angle between v and k, such that # = 0 corresponds to radiation
directed along the positive z-axis. The radiation emitted into the half space which
the particle is entering is called forward transition radiation.

*W _ e’B?  sin®’fcos? 0
dwdQ)  4m3ege (1 — (2 cos? f)2

The corresponding relation for the case of a point charge entering a medium
from vacuum is simply obtained by replacing 3 by -3 as sketched in Fig. 1.5.
The radiation emitted into the vacuum is then given by

2
*W _ e’B*>  sin’fcos® 0 (e, — 1)(1 — 3% + By/e, —sin?0)
dwdQ  4meoc (1 — B2 cos? 0)? (ercos B + \/e, —sin?0) (1 + By/e, — sin” )

1 (1.35)
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Figure 1.5: Point-charge e entering a medium with permittivity ¢, from vacuum
(- = 1). Backward transition radiation is emitted into the vacuum at an angle
0 between k and the negative velocity of the particle. The problem is symmetric
in x and y.

where 6 is now the angle between -v and k.

Equations (1.34) and (1.35) are known as the Ginzburg-Frank formulas for tran-
sition radiation at the interface between an arbitrary medium and vacuum. Tran-
sition radiation is also emitted into the medium. The corresponding equations
can be obtained by exchanging the two media in the preceding derivation while
leaving the direction of the v unchanged.

Some conclusions can be drawn so far. Transition radiation is produced both
due to the entry process from vacuum into a medium and due to the exit process
from a medium into vacuum. From either process, both forward and backward
transition radiation are produced. The spectral composition of the radiation
is determined by the value of €,(w). The radiated intensity is proportional to
e, — 1|>.2 The more the dielectric function of the medium differs from e, = 1,
the more transition radiation is emitted. Transition radiation is polarized with
the electric vector lying in the plane defined by k and v (observation plane).

1.3.2 Special Case: Interface Vacuum-Metal

Based on the general formalism, we will now discuss some special cases of the
Ginzburg-Frank formulas. In particular, we will restrict the discussion to the case
of the interface between vacuum and a metal.

3In the most general case of two arbitrary media, the radiated intensity is proportional to
lers — 5r2|2. The more the dielectric functions differ, the more transition radiation is emitted.
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The dielectric function of a metal depends on the frequency range of interest.
For frequencies not higher than in the optical range, in general metals can be
regarded as perfect conductors with €, = co. This formula can be applied for the
here relevant optical and lower frequencies. Since these waves do not propagate
in a metal, they are only emitted into vacuum.

For higher frequencies, ¢, must be obtained from

w2

where w,, is the plasma frequency of the metal.

In the following sections, only frequencies for which the metal is a perfect con-
ductor will be considered.

1.3.3 Normal Incidence: Non-Relativistic Limit

In the non-relativistic limit (8 < 1and f < 1/,/€;), one obtains from (1.33)
and (1.27)
dZW 62 52 2
dwdQ  16m3¢,c
The radiation from the entry process into a medium and from the exit process
into vaccuum is identical. For the special case of a metal-vacuum interface and

frequencies, for which the metal is a perfect conductor, (1.37) becomes

ﬂ(1 — &)

- (1.37)

sin? @

d*w _ e?3?sin? 4

— 1.38
dwd2 4mdege ( )

1.3.4 Normal Incidence: Ultrarelativistic Limit

We will now consider the ultrarelativistic limit (8 ~ 1). To simplify the discus-
sion, we again consider the case e, = oo. For small angles 6, equation (1.33)
simplifies to
% e 32 sin? @
dwdQ  16m3goc (1 — Bcos )2’

The corresponding expression for the transition from vacuum into a medium is
given by

(1.39)

e? 32 sin? 6

— = 1.40

dwdQ ‘ ”‘ 16m3epc (1 — [ cos 0)? (1.40)
and differs from (1.39) only by the reflectivity B = ‘r”‘ For e, = o0, we
have R = 1 and the radiation from both processes is again identical.
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In the ultrarelativistic case, the radiation has its maximum at angles

= /1 - g2 (1.41)

0~

= |+

We can therefore write
sin? ~ 62
02

cos’f ~ 1-— B (1.42)

and obtain from (1.39) for the radiated energy

dQW _ 62ﬂ2 02
dwdQ — 4dmdepc[02 + (1 — B2

(1.43)

Integrating over the solid angle yields the total emitted energy per unit fre-
quency [6]:
dw e? 1
= n :
dv  4m?gqec 1 — (32

(1.44)

1.3.5 Oblique Incidence on a Single Surface

So far, we have discussed the case where the particle trajectory is normal to the
interface. We will now consider the case, where the particle moves through an
interface at an arbitrary angle. Without loss of generality, we can let the particle
trajectory be inclined by an angle ¢ with respect to the z-axis as sketched in
Fig. 1.6.

The plane of incidence is defined by v and the vector normal to the interface.
The observation plane is defined as before by n and the vector normal to the
interface. The calculation is done as before, but we have now to calculate the
components parallel and perpendicular to the observation plane separately:

EW (W 2w
ddS) (dwdQ)” * <dwdQ>L' (1.45)

In general, the parallel and perpendicular components are not equal and the total
radiation seen at the observation point is elliptically polarized.

We consider the projection of the vectors on the observation plane as sketched
in Fig. 1.7. For the component parallel to the observation plane we obtain the
expression
<d2W> _ e? B X no 4y By X n3 Y By x m
dwdQ )~ 1673 |1— B - =8 n; al—B-n./E|’

(1.46)

15



vacuum
=1 E|
B, n
B w5 1
| B
5, 3 y
medium
g >1
X

Figure 1.6: Particle travelling from a medium into vacuum. The particle trajec-
tory is inclined by an angle i) with respect to the z-axis.

z
N3 n,
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g =1 g
1

0| medium
g, >1

Figure 1.7: Projection of the vectors ny, ny, n3 and 3 in the observation plane.
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where (3| is the projection of 3 in the observation plane. The Fresnel coefficients
are given by (1.23), (1.26) and (1.27), where we have to write 6, instead of 6.

The component perpendicular to the observation plane is given by

d2W 62 9 1 1 tL 1
= 3 B1 T+ —
dwdQ ) | 16megc 1—08-ny 1-8-n3 /6, 1-B-n,/&
(1.47)
with
cosf, — /e, —sin? 4, (1.48)
r, = s .
cost, + /e, — sin? 6,
2,/€r cos ),
t, = : (1.49)
cos b, + /e, —sin? 6,
14
l+r, = —. (1.50)

VEr
Equations (1.46) and (1.47) are the general expressions for oblique incidence.

For 3, = 0 and 3 = (3 they yield again the Ginzburg-Frank formulas for normal
incidence derived before.

1.3.6 Oblique Incidence: Non-Relativistic Limit

Neglecting the terms (8 - n;), (8 - ny) and (B - n3) in (1.46) yields
2

call 16, % (ny+ "L ny)
= n, + rng —
dwdQ) i 167r35 c | 2 I8 VeEr '
W
(dwd9> = 0 (1.51)
L
We can as well write (1.51) as
i e, t |
= = 20,11
dwdS) (dwdQ) 16732, cﬁ S e
sin?  cos? 0
= B, 1) (1.52)
47T3‘5 ¢ e, cos @ + y/&, — sin ¢9|2
For ¢, = o0, we obtain again

*W  e*f2sin* 0
dwdQ  Amdege
Writing 3 instead of (3,, this is the same result as obtained for normal incidence

in the non-relativistic limit. The radiation from the entry and the exit process is
identical.

(1.53)
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1.3.7 Oblique Incidence: Ultrarelativistic Limit

Again, we consider the case ¢, = oo0. We have to treat the transition from the
medium into vacuum and the inverse process separately.

Neglecting the second and third term in (1.46) and (1.47) leads to

<d2W> _ e? <,3||><n2 )2

dwdS) ! 16m3e9c \1 — B - ny

< W ) e ( B, x n )2 (154)
dwdQ2 ) | 16m3gc \1 — B -ny ) ~ ’

The total intensity is given by

W (dQW) +<d2W>
dwdS) dwdS2 ! dwdY ) |
e? (B x ng)* + (B, x ny)?
1673eoc (1 -7 ny)?
e? (B x ny)?
16m3g5c (1 — B ny)?

(1.55)

The radiated energy is in this approximation independent of the angle of incidence
and of the permittivity of the medium.

For the transition from the vacuum into the metal, we obtain a different result.
In equations (1.46) and (1.47), the second term becomes most important since
(B - n3) is close to unity. This has the important consequence, that the most of
the radiation is emitted at the angle of reflection. We obtain

a?w B e? . ,3|| X ng
dwd2), ~ 167%0c| 11— B ny
d°wW e 9 1 2
= — _ 1.56
<dwd9>L T6m0c - " T= By (1.56)
The total intensity is given by
d*w B d*w n d*w
dwdQ — \ dwdQ ! dwd() ) |
_ e2 R (3 X nj 2+ﬁi(RJ_—R||) (1 57)
1673¢qc 1= B - n3 (1 =B -n3)? '

Note, that for normal incidence (R, = R)j), the same result is obtained as before
(1.40).
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1.3.8 Transition Radiation from a Foil

Finally we will consider the case of a metal foil in vacuum, that is the case of two
parallel surfaces. The problem can be treated by deriving the general formulas as
done for a single surface before. The formalism becomes exceedigly complicated
since multiple reflections at the interfaces must be taken into account [7].

Again, we will consider the case of a metal foil in vacuum and frequencies not
higher than in the optical range. In this case, no radiation can propagate inside
the foil. The entry and the exit process are completely independent and the for-
mulas obtained for a single interface can be applied.

Figure 1.8 shows the emission of transition radiation for the case of normal in-
cidence on a perfectly conducting foil. Backward transition radiation from the
entry process of the particle into the foil is emitted centered around the negative
z-axis. Forward transition radiation from the exit process out of the foil is emit-
ted centered around the positive z-axis.

Figure 1.9 shows the very important case where the foil is inclined with respect to
the particle trajectory. While the direction of the forward transition remains un-
changed, backward transition radiation is now emitted at the angle of reflection.
For an angle of 45° with respect to the particle trajectory, backward transition
radiation is emitted at 90° with respect to v. This allows to separate the radi-
ation from the electron beam and make use of it for all sort of measurements.
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Figure 1.8: Transition radiation from a metal foil surrounded by vacuum. The
foil is normal to the particle trajectory. Forward transition radiation is centered
around the positive z-axis and backward transition radiation is centered around
the negative z-axis.
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Figure 1.9: Transition radiation from a metal foil surrounded by vacuum. The
foil is inclined by an angle ¢ with respect to the particle trajectory. Forward
transition radiation is still centered around the positive z-axis while backward
transition radiation is now centered around the angle of reflection.
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Figure 1.10: Notation used do derive the formalism for synchrotron radiation.

1.4 Synchrotron Radiation

We will now consider the case, where a point-charge is travelling in vacuum. If
the particle is travelling linearily at constant speed, no radiation process is pos-
sible. If the particle is moving on a non-linear trajectory, synchrotron radiation
is emitted.

We start again from the general equation for the radiation field of a point charge
moving on an arbitrary trajectory (1.11). We will restrict the discussion to a
circular orbit with radius of curvature p (Fig.1.10). We further use the approx-
imation that the particle is moving at # ~ 1, and therefore the radiation is
emitted at small angles § =~ 1/7. The observer sees a radiation pulse during
the short time ¢ =~ p/(¢y). The evaluation of the integral in the general equa-
tion (1.11) is complicated and can be found in e.g. [4], [9]. The radiated energy
per unit frequency and unit solid angle is

02

W € wp\2 (1 2
oi = e (2) (2 +) [0+ iy gtate) - 059

Here, K33(¢) and K7 3(§) are modified Bessel functions. The first term in the
brackets corresponds to radiation polarized in the plane of deflection, the second
term corresponds to radiation polarized perpendicular to the plane of deflection.
From the properties of the Bessel functions one can conclude, that the radiation
is mainly found in the plane of deflection. It is sharply peaked at a small angle
in forward direction. The radiated energy scales with v*.

The total power emitted by an ultrarelativistic electron on a circular trajectory
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is given by [10]

1 2 ce?~*
07 Urey3 p2
The spectral distribution is given by
dP P,
- —-Yg (ﬂ)
dw  w, \w,

where the critical frequency is defined by

and the function S () by

$(2) =% (5) [ wmtone
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1.5 Multiparticle Coherence Effects

In the previous sections we have developed equations for the radiated intensity
emitted by a single particle due to various processes. At particle accelerators,
large numbers of particles are accumulated in bunches. This can lead to coherence
effects at wavelengths that exceed the bunch size. The arguments developed here
hold for any kind of radiation.

1.5.1 Multiparticle Coherence Calculations

We will denote the radiation intensity emitted by a single electron at a wave-
length A by I;()\) and the intensity emitted by a bunch of N particles by L, ()).
In order to obtain the total radiation emitted by a bunch of N particles, the radi-
ated intensity of each single particle has to be summarized. In a naive treatment,

the result is simply
Itot()\) = NI1 (/\) (163)

In a full calculation however, the fields of the single particles have to be summed
paying attention to the phase [11],[12],[13]. Figure 1.11 shows the notation used
for the following derivation. We consider a symmetric bunch centered at r = 0.
The distance between the center of the bunch and the detector is R. We assume
that the relative position of the electrons does not change during the emission.
The electric field from the j** electron seen by the detector is given by

E;(A) = Ey()) exp{2min, - r;/A}, (1.64)

where Ey()) is the field due to a reference electron at 7 = 0 and n; is the unit
vector directed from the detector to the j™ electron. Summing over all electrons
in the bunch yields

Ei(N) = E1 (V) i exp{2min; - r;/A} (1.65)

and hence the total emitted intensity is given by

2
N
Liot(A) = Li(A) | D exp{2min; - r;/A}| . (1.66)
j=1
We can rewrite the squared sum as
N N
Liot(A) = L(A)Y exp{2min; -1;/A\} > exp{—2miny - ry/A}
j=1 k=1
N N
= Li(A) D exp{2mi(n; -r; —ny-ry)/A} + Y exp{2mi(n; - r; — ng - 1) /A}
Jrk=1 jrk=1
j=k J#k
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Figure 1.11: Coherent radiation from an extended electron bunch.

N
= Il()\)N + Z exp{27ri(nj Ty — g - I'k)/)\} (167)
j.k=1
J#k

We can also write (1.67) as

L) = LOYIN + N(N = 1) 7], (1.68)
where we define
FO = N(+—D 3 expl2mi(n; -3~ my 1)/ A (1.69)

For a large number of particles (N — 00), f(A) can be derived from a continuous
particle density S(r) and then be expressed by the Fourier integral

£ = ‘ [ 5)exp{orin-x/A}dr g (1.70)

f(A) is hence given by the Fourier transform of the charge distribution function
squared. The distribution function S(r) is symmetric about r = 0,

S(r) = S(-r), (1.71)
and normalized such that
+o0
/ = S(r)d*r = 1. (1.72)

The factor f()) is called the bunch form factor. For wavelengths larger than the
bunch length, the form factor approaches unity. In this limit, the particles in the
bunch radiate coherently and the whole bunch behaves as a macro-particle with
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charge Ne. The radiated intensity in this wavelength range scales with (Ne)?.
For wavelengths much smaller than the charge distribution, the form factor ap-
proaches zero and the particles radiate incoherently. The radiated intensity in
this part of the spectrum scales with Ne?. The coherent part of the spectrum
therefore carries information about the charge distribution and is strongly en-
hanced compared to the incoherent part.

If R is much larger than the bunch size and for a cylindric symmetric bunch,
(1.70) simplifies to

f(A) =