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Abstract

The standard approach to compute the optical parameters and the beam emittance in a
transport channel is based on the analysis of the profiles measured by three monitors. This
requires the independent measurement of the dispersion function at the monitor locations
and the knowledge of the value of the beam’s momentum spread.
In this paper different approaches based on the use of more than three beam profiles are
presented. These techniques allow the determination of the complete set of four optical pa-
rameters, the betatron and dispersion functions and their derivatives, along with the beam
emittance and the beam’s momentum spread, simultaneously and without varying the phys-
ical parameters of the transport channel or the upstream machine.
A detailed description of the different methods is carried out with a particular emphasis on
their accuracy. Results of numerical simulations are presented.
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1 Introduction
The complexity of the new generation of high-energy superconducting machines imposes

tight constraints on the whole injector chain. In order to achieve the top performance in terms
of luminosity of the planned CERN LHC [1], it is mandatory to preserve the value of the beam
emittance through the whole chain of low-energy machines [2, 3]. Although a crucial point is to
avoid beam blow-up in the circular accelerators, which is obtained by carefully tuning the ma-
chines, the matching of the transfer lines to the phase space of the preceding and the subsequent
machine also play a predominant role.

In fact, even neglecting emittance blow-up due to the presence of possible non-linear
fields, a transfer line generates transverse or longitudinal mismatch which will produce emit-
tance increase after beam filamentation.

Hence, as a consequence of the high performance required for the physics experiments,
there has been a renewed interest in optics issues in transfer lines, with special emphasis on
automated algorithms to measure optical parameters with the aim of computing mismatch fac-
tors, and, eventually, of applying corrections (see Ref. [4] for an overview of this field). These
algorithms are usually devoted to the correction of the beam trajectory, via dedicated steering
magnets, or to reducing the injection mismatch by using quadrupole magnets. An application
of these concepts to the transfer line joining the PS and the SPS machines allowed a substantial
improvement of the beam quality [5].

Every correction procedure is based on a set of measured parameters to be compared
with their theoretical values. Two different approaches are available. The first one deals with
the measurement of the optical parameters by trajectory fit on Beam Position Monitor (BPM)
data [6]. It allows the reconstruction of the transfer matrices between different BPMs and, in
particular, the value of the dispersion function.

The second technique allows to derive not only the optical parametersα, β, γ but also
the beam characteristics, emittance and beam’s momentum spread, by means of a fit of beam
profiles [6, 7]. The very essence of this approach consists in looking for a ‘best beam’ that fits
the measured data. In doing so, the optical parametersα, β, γ, which are a characteristic of the
transport channel, are mixed up with beam parameters (emittanceε and relative momentum
spreadδ) thus introducing the possibility of spurious compensations between the two sets of
parameters.

The standard is based on the measurement of the transverse beam profile at three dif-
ferent locations together with the measurement of the dispersion function at the same three
locations [8, 9]. The dispersion function needs to be measured independently by recording the
beam position at the monitors for different values of the beam momentum and by computing
the slope of a straight line fitted to the measured data. The main drawback of such an approach
is that it requires modifying some machine parameters and, in some situations, the extraction
process does not allow this to be done.

A possibility to avoid these off-momentum measurements, consists in exploiting the in-
formation coming from a larger number of measured beam profiles. According to the number
of profiles it is possible to derive a larger set of optical (α, β, D and its derivativeD′) and
beam parametersε, δ without varying any physical parameters of the transport channel or of the
preceding machine. For instance, five beam profiles allow the computation ofα, β, D, D′ and
ε [10], while the information contained in six profiles can be used to deriveδ also. For more
than six profiles a least squares approach can be used to improve the accuracy. These techniques
are presented and discussed in detail in this paper. Analytical formulae are derived to quantify
the error associated with the computed parameters and the accuracy of the different methods is
tested by numerical simulations.
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In Section 2, the theory of the standard three-monitor method is reviewed and the new ap-
proaches based on five and six monitors are presented. In addition, the approach based on more
than six monitors is described and a general formula to evaluate the accuracy of the different
methods is introduced. In Section 3, the results of numerical simulations are reported. Finally,
some conclusions are drawn in the last Section.

2 Theory
The standard three-monitor method [8, 9] derives the optical parametersα, β and the

emittanceε from the measurement under the following assumptions:
– The value of the dispersion functionD is known (possibly zero) all along the section

where the monitors are installed.
– The transfer matrices of the beam line sections between the monitors are known.
– The beam dynamics in the horizontal and vertical planes is fully decoupled in between

the monitors.
If σi indicates the width of the beam profile at one sigma measured in theith monitor, then

σ2
i = σ2

β,i + D2
i δ

2, i = 1, 2, 3 (1)

in whichσβ,i is the rms betatron beam width defined as

σβ,i =
√

βi ε (2)

and ε, δ are the transverse emittance and the relative momentum spread of the beam at one
sigma, respectively. Using Eq. (2) and the transformation matrix for the Twiss parameters
(βi, αi, γi) [8]


βi

αi

γi


 =


 C2

i −2Ci Si S2
i

−Ci C
′
i S ′

i Ci + Si C
′
i −Si S

′
i

C ′2
i −2C ′

i S ′
i S ′2

i





β1

α1

γ1


 (3)

whereCi, Si are the cosine-like and sine-like solutions for the betatron motion between the first
and theith monitors, andC ′

i, S ′
i represent the derivatives ofCi andSi with respect tos, the

betatron beam widthsσβ,i at the three monitors may be written in terms of the emittance and
the Twiss parameters at the first monitor in a3× 3 matrix formulation

Σ = MΠ. (4)

Here the three-dimensional vectorsΣ, Π and the matrixM are defined as

Σ =


σ2

β,1

σ2
β,2

σ2
β,3


 Π =


β1ε

α1ε
γ1ε


 M =


 1 0 0

C2
2 −2C2 S2 S2

2

C2
3 −2C3 S3 S2

3


 . (5)

The3× 3 extended transfer matrix between monitors1 andi is given by

Ti =


Ci Si ξi

C ′
i S ′

i ξ′i
0 0 1


 (6)
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whereξi is the contribution to the dispersion due to a dipole magnet between the first and the
ith monitor. The propagation of the dispersionDi in terms ofD1 and its derivativeD′

1 is given
by the expression

Di = CiD1 + SiD
′
1 + ξi i = 2, 3 (7)

Usingβ1γ1 − α2
1 = 1, the solutionΣ′ = M−1Σ of Eq. (4) can be cast into the form

β1 = A/
√

AC −B2 A = Σ′
1

α1 = B/
√

AC −B2 with B = Σ′
2

ε =
√

AC −B2 C = Σ′
3

(8)

or, equivalently

ε = σ2
β,1Λ β1 =

1

Λ
α1 =

Γ

2Λ
. (9)

Γ andΛ are given in terms of the betatron profile widthsσβ,i

Γ =
[(σβ,3/σβ,1)

2 − C2
3 ]/S2

3 − [(σβ,2/σβ,1)
2 − C2

2 ]/S
2
2

(C2/S2)− (C3/S3)

Λ2 = (σβ,2/σβ,1)
2/S2

2 − (C2/S2)
2 + (C2/S2)Γ− Γ2/4.

The three quantitiesΣ′
i stand for the three components of the vectorΣ′.

In analogy with the approach based on five or more monitors, to be described below,α1,
β1 andε may be expressed from Eqs. (3) and (7) using a6× 6 matrix formulation equivalent to
Eq. (4). ProvidedD1, D′

1 andδ are known, one can write

Σ = MΠ, (10)

in terms of the new six-dimensional vectorsΣ andΠ

Σ =




σ2
1

σ2
2

σ2
3

D1δ
2

D′
1δ

2

δ2




Π =




β1 ε + D2
1δ

2

α1 ε−D1D
′
1δ

2

γ1 ε + D′2
1δ

2

D1δ
2

D′
1δ

2

δ2




(11)

and the6× 6 matrix

M =




1 0 0 0 0 0
C2

2 −2C2 S2 S2
2 2C2 ξ2 2S2 ξ2 ξ2

C2
3 −2C3 S3 S2

3 2C3 ξ3 2S3 ξ3 ξ3

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




. (12)

The value of the derivative of the dispersion functionD′
1 at the first monitor can be

obtained from the knowledge of the measured dispersionDi at the other monitors using Eq. (7),
yielding

D′
1 =

C3(D2 − ξ2)− C2(D3 − ξ3)

C2 S3 − C3 S2
. (13)
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The solution of Eq. (10) is given byΣ′ = M−1Σ, from which, the emittance and the
Twiss parameters can be derived as

β1 = A/
√

AC − B2 A = Σ′
1 −D2

1δ
2

α1 = B/
√

AC − B2 with B = Σ′
2 + D1D

′
1δ

2

ε =
√

AC − B2 C = Σ′
3 −D′2

1δ
2.

(14)

According to Eqs. (4) to (5) the presence of dipole magnets in the section of the beam line
delimited by the first and last monitors has no influence on the determination ofα1, β1 andε.

2.1 Method using five monitors
The dispersion functionD can be determined experimentally at each monitor location by

measuring the beam position for different beam momentum values and fitting the data using
a linear model: the slope of the fitted straight line at each monitor represents the value of the
dispersion function.

Although the measurement of the dispersion is conceptually simple, it requires the mod-
ification of some machine parameters and this is not always possible or easy to do during rou-
tine operation. However, from simple arguments, the information extracted from five monitors
should be sufficient to compute the five unknown quantitiesα, β, D, D′ε (the relative momen-
tum spreadδ has to be known anyway). It turns out that this is the case, provided at least two
dipoles are installed in the section of the beam line between the first and last monitor.

Once again the starting point is Eq. (1), connecting the optical parameters and the mea-
sured beam profiles in the presence of dispersion, and the transformation rules (3) and (7) used
to propagate the Twiss parameters and the dispersion. Eq. (1) can be cast in the form of a system
of five equationsΣ = MΠ similar to Eq. (4), by introducing the five-dimensional vectorsΣ
andΠ

Σ =




σ2
1

σ2
2 − ξ2

2δ
2

σ2
3 − ξ2

3δ
2

σ2
4 − ξ2

4δ
2

σ2
5 − ξ2

5δ
2


 Π =




β1 ε + D2
1δ

2

α1 ε−D1D
′
1δ

2

γ1 ε + D′2
1 δ2

D1δ
2

D′
1δ

2


 (15)

and the5× 5 matrix

M =




1 0 0 0 0
C2

2 −2C2 S2 S2
2 2C2 ξ2 2S2 ξ2

C2
3 −2C3 S3 S2

3 2C3 ξ3 2S3 ξ3

C2
4 −2C4 S4 S2

4 2C4 ξ4 2S4 ξ4

C2
5 −2C5 S5 S2

5 2C5 ξ5 2S5 ξ5


 . (16)

A necessary condition for the matrixM to be invertible (i.e. non singular) is that at least two
quantitiesξi are different from zero.

Provided the matrixM can be inverted, the solution is given byΣ′ = M−1Σ and the
unknown parameters can be expressed as follows

D1 = Σ′
4/δ

2

D′
1 = Σ′

5/δ
2

β1 = A/
√

AC −B2 A = Σ′
1 − Σ′2

4/δ
2

α1 = B/
√

AC −B2 with B = Σ′
2 + Σ′

4Σ
′
5/δ

2

ε =
√

AC −B2 C = Σ′
3 − Σ′2

5/δ
2.

(17)
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Similarly, the system of equations (15) and (16) may be recast in a6× 6 matrix form in which
the vectorsΣ andΠ are given by

Σ =




σ2
1

σ2
2

σ2
3

σ2
4

σ2
5

δ2




Π =




β1 ε + D2
1δ

2

α1 ε−D1D
′
1δ

2

γ1 ε + D′2
1 δ2

D1δ
2

D′
1δ

2

δ2




, (18)

M takes the form

M =




1 0 0 0 0 0
C2

2 −2C2 S2 S2
2 2C2 ξ2 2S2 ξ2 ξ2

2

C2
3 −2C3 S3 S2

3 2C3 ξ3 2S3 ξ3 ξ2
3

C2
4 −2C4 S4 S2

4 2C4 ξ4 2S4 ξ4 ξ2
4

C2
5 −2C5 S5 S2

5 2C5 ξ5 2S5 ξ5 ξ2
5

0 0 0 0 0 1




(19)

and the solution is stillΣ′ = M−1Σ. In Appendix A the extension of the five-monitor
method to the case of a periodic transport channel is presented.

2.2 Method using six monitors
If six monitors are installed in a transfer line, the application of the method described in

the previous Section to the different combinations of five monitors out of the six available could
be considered. Then, the computed values of the optical parameters could be averaged thus
reducing systematic errors. Another possibility would be to select the best set of five monitors
out of the whole ensemble and to apply the technique to such a subset.

A different approach is to use the information provided by the six monitors to evaluate
not only the optical parametersα1, β1, D1, D

′
1 andε, but also the momentum spreadδ which

was assumed to be known in the previous Section. The arguments used to derive the previous
equations can be adapted to this situation. Eq. (4) is still valid, but now the vectorsΣ andΠ
have dimension six i.e.

Σ =




σ2
1

σ2
2

σ2
3

σ2
4

σ2
5

σ2
6




Π =




β1 ε + D2
1δ

2

α1 ε−D1D
′
1δ

2

γ1 ε + D′2
1δ

2

D1δ
2

D′
1δ

2

δ2




, (20)

whileM is

M =




1 0 0 0 0 0
C2

2 −2C2 S2 S2
2 2C2 ξ2 2S2 ξ2 ξ2

2

C2
3 −2C3 S3 S2

3 2C3 ξ3 2S3 ξ3 ξ2
3

C2
4 −2C4 S4 S2

4 2C4 ξ4 2S4 ξ4 ξ2
4

C2
5 −2C5 S5 S2

5 2C5 ξ5 2S5 ξ5 ξ2
5

C2
6 −2C6 S6 S2

6 2C6 ξ6 2S6 ξ6 ξ2
6




. (21)
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The necessary condition forM to be invertible is that at least three quantitiesξi are different
from zero.

Whenever the conditions for the matrixM to be non-singular are fulfilled, the optical
parameters can be computed by using the following expressions

δ2 = Σ′
6

D1 = Σ′
4/Σ′

6

D′
1 = Σ′

5/Σ′
6

β1 = A/
√

AC −B2 A = Σ′
1 − Σ′2

4/Σ′
6

α1 = B/
√

AC −B2 with B = Σ′
2 + Σ′

4Σ
′
5/Σ′

6

ε =
√

AC −B2 C = Σ′
3 − Σ′2

5/Σ′
6.

(22)

2.3 Method using more than six monitors
When more than six monitors are installed in the transfer line it is possible to choose

between two different approaches: the first one consists of the application of the deterministic
equations obtained in the previous Sections to a subset of five or six monitors.

A second technique is based on a fit procedure: the model expressed by Eqs. (3), (7) is
used to find the best parameters that match the beam widths measured on the different monitors.
For this second technique, the starting point is the definition of a function to be minimised. The
natural choice is the following function

χ2(Π) =

Nmon∑
i=1

[
yi − ȳi(Π)

∆i

]2

, (23)

whereNmon is the number of monitors,yi represents the square of the beam width measured on
theith monitor,ȳi(Π) is the square of the beam-width expressed in terms of the transfer matrix
elementsCi, Si, ξi and the components of the vectorΠ, defined in a similar way to Eqs. (15) or
(20) depending on whether the momentum spread is known or unknown. Finally,∆i stands for
the measurement error associated withyi.

The goal is to minimise the functionχ2 and this is achieved by solving the following
equations

∂χ2(Π)

∂Πi
= 0 1 ≤ i ≤ 5 or 6. (24)

After some algebra, it is possible to recast Eq. (24) in the following form similar to Eq. (4)

Σ̄ = M̄Π. (25)

HereΣ̄ andM̄ are similar to the vectorΣ and to the matrixM defined in Eqs. (20) and (21),
but with theith line rescaled by the quantity∆i, i.e. Σ̄ = ∆Σ andM̄ = ∆M, with the
Nmon-dimensional vectorΣ and theNmon ×Nmon diagonal matrix∆ defined as

Σ =




σ2
1

σ2
2
...

σ2
mon


 ∆ =




∆−1
1 0 · · · 0
0 ∆−1

2 · · · 0
...

...
...

...
0 0 · · · ∆−1

mon


 . (26)
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If the momentum spread is unknown, then,M is represented by a rectangularNmon × 6
matrix of the form

M =




1 0 0 0 0 0
C2

2 −2 C2 S2 S2
2 2 C2 ξ2 2 S2 ξ2 ξ2

2
...

...
...

...
...

...
C2

mon −2 Cmon Smon S2
mon 2 Cmon ξmon 2 Smon ξmon ξ2

mon


 . (27)

ProvidedM̄tM̄ is non-singular, the solutionΣ′ of Eq. (25) can be written as

Σ′ = (M̄tM̄ )−1 M̄t Σ̄, (28)

whereM̄t is the transpose matrix of̄M.
The optical parameters and the momentum spread can be found as in Eq. (22). The re-

duction of this method to the case where the momentum spread is known is straightforward,
i.e. the last column ofM and the last line ofΠ must be dropped, yielding aNmon × 5 matrix
and a five-dimensional vector, respectively. Furthermore, Eq. (17) should be applied in place of
Eq. (22) to obtain the optical parameters.

It can be verified that this approach is equivalent to the deterministic solution presented
in the previous Sections whenNmon = 3, 5, 6.

2.4 Error estimates
Under the assumption that the errors on the measured beam profiles are statistically inde-

pendent, the error on the fit parameterserr(Σ′
i) is given by

err2(Σ′
i) =

Nmon∑
l=1

(
∂Σ′

i

∂yl

)2

∆2
l (29)

Introducing for convenience the matrixB = (M̄tM̄ )−1, Eqs. (28–29) yield

∂Σ′
i

∂yl
=

6∑
j=1

Bi,j

Mt
j,l

∆2
l

(30)

and

Nmon∑
l=1

(
∂Σ′

i

∂yl

)2

∆2
l =

6∑
j=1

6∑
k=1

Nmon∑
l=1

Bi,jBi,k

Mt
j,lMl,k

∆2
l

=

6∑
j=1

6∑
k=1

Bi,kBi,jB−1
j,k (31)

from which the final result is obtained

err2(Σ′
i) = Bi,i. (32)

The matrixB is in fact, the covariant matrix and its diagonal elements provide an estimate of
the error on the fitted parameters.

The error on the measured Twiss parameters can be deduced from (32) by applying the
standard techniques of error propagation to the relations (17) and (22). Note that the condition
det(M̄t M̄) 6= 0 together with the minimisation of the termsBi,i can be used to determine
the optimal monitor locations to derive the optical and beam parameters according to the new
methods derived in previous Sections.
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3 Application of the new methods to derive optical and beam parameters
3.1 The model

The approach described in the previous Sections has been applied to the transfer line
between the CERN Proton Synchrotron (PS) and the Super Proton Synchrotron (SPS). This
line is divided into two consecutive parts: the TT2 line and the TT10 line. At the junction of the
two lines, the beam is deflected≈ 81 mrad to the right. Due to the difference in height between
the PS and SPS, a vertical deflection angle of≈ 60 mrad is also imposed at the entrance of
TT10 and then cancelled before injection in the SPS.

Three Secondary Emission Monitors (SEMs) are installed in each the TT2 and TT10
section. These two sets of monitors are routinely used to perform emittance and Twiss parameter
measurement in both lines. For this purpose, the standard method based on Eq. (9) is used, with
the dispersion measured by performing an energy shift.

In addition, four Optical Transition Radiation screens (OTRs) [11, 12] are installed in
the TT10 transfer line. They also allow the measurement of beam profiles, but they have the
advantage of a better resolution, of providing a three dimensional view of the beam distribution
and of inducing a negligible blow-up on the beam.

Fig. 1 shows the most relevant optical parameters of the TT2/TT10 transfer line. In the
upper part the horizontal and verticalβ-functions are shown, in the centre the horizontal and
vertical dispersion functions are plotted, while in the lower part the horizontal and vertical beam
envelopes are shown. Also marked are the positions of the ten beam profile monitors. The optical
parameters shown refer to the transfer line setting to be used for the future LHC operation.

3.2 Results of numerical simulations
A series of numerical simulations have been carried out to test the performance of the

different methods presented. The aim of such simulations is twofold: Firstly, using Eq. (32), the
problem of optimising the position of three monitors so that the accuracy of the measurement is
maximised has been considered. Secondly, a comparison of the accuracy of the various methods
presented in the previous Sections has been carried out. The main point of this analysis consists
of the determination of the behaviour of the computed optical parameters with their dependence
on measurement errors affecting the beam profile widthσi.

3.2.1 Optimisation of the monitor positions
For these numerical simulations, the starting point defines a target function to be min-

imised. Following the analysis carried out in the previous Section, it is quite natural to define
this target function as the sum of the errors on the parametersΣ′

i:

6∑
i=1

err2(Σ′
i) =

6∑
i=1

Bi,i = trB (33)

Using the standard parametrisation of the transfer matrix in terms of Twiss parameters, one can
express the trace of the matrixB as

trB = trB(∆ϕ2, ∆ϕ3), (34)

where∆ϕi represents the phase advance between theith monitor and the first one. The opti-
misation has been applied to the three-monitors method. By using theMAD program [13], the
transfer matricesTi have been computed at a selected number of locations along the transfer
line, then the functiontrB has been evaluated. The location of the first monitor has been kept
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Figure 1: Horizontal and verticalβ-functions (upper part), dispersion function (centre part) and
beam envelope (lower part) for the TT2/TT10 line for rms emittance ofεH = εV = 0.25 µm
and rms beam’s momentum spread of1.0 × 10−3. The position of the beam profile monitors
installed in the transfer lines is also shown.
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Figure 2: Two-dimensional plots oftrB as a function of∆ϕ2, ∆ϕ3. On the left part the plot is
restricted to the TT2 section, while in the right part the function over the whole transfer line
is shown. The colour is proportional to the function value: higher values correspond to darker
regions. Hence, local and global minima correspond to lighter (white) regions.

fixed, while the position of the remaining two monitors has been varied along the transfer line.
The results are shown in Fig. 2. The surface representing the graph oftrB has been projected on
a 2D plot: in the left part a plot of the function restricted to the TT2 section is shown, while in
the right parttrB over the whole TT2/TT10 transfer line is shown. The colour is proportional to
the function value: higher values correspond to darker regions. Hence, local and global minima
correspond to lighter (white) regions. The results refer to the horizontal plane. Some features
are apparent:

– The triangular shape of the plots is due to the fact that in the simulations the order of the
monitors is never reversed, hence the following holds∆ϕ3 > ∆ϕ2.

– The configurations having∆ϕi = 2kπ represent ‘bad’ configurations. This can be easily
understood as, in this case, two out of the three monitors are actually equivalent as far as
the optical conditions are concerned.

– Configurations having both the second and the third monitor in the TT10 transfer line are
‘bad’.

– Some configurations having only one monitor in the TT10 transfer line correspond to
local minima of the functiontrB. By comparing the results with the optical functions
shown in Fig. 1 it is found that the local minima correspond to locations where the hori-
zontal beta-function is maximum.

– A direct inspection of the numerical values oftrB allows to determine that the global
minimum is attained for∆ϕ2/2π = 0.405 and ∆ϕ3/2π = 0.781, i.e. when all the
three monitors are placed in the TT2 transfer line. The value of the phase advance in
the horizontal plane for the actual position of the monitors is∆ϕ2/2π = 0.236 and
∆ϕ3/2π = 0.347, corresponding to a local minimum of the functiontrB. It is worth-
while stressing the fact that the optimal configuration does not obey the common rule
stating that the phase-advance must be∆ϕ2 = 1/3 and∆ϕ3 = 2/3.
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3.2.2 Comparison of the accuracy of the different methods
Using nominal values for the initial optical parametersα, β, D, D′, ε, δ, the correspond-

ing values ofσi at the monitor locations have been computed, thus generating a sequence
S = {σi}i=1,Nmon . In the numerical simulations it has been assumed that the error affecting
the transfer matrices is negligible with respect to the error on the beam profile due to the ran-
dom fluctuations of the beam characteristics and the accuracy of the monitors. To simulate the
effect of measurement errors and fluctuations in the beam properties new sequences have been
derived by the following process

σ̄i(j) = σi[1 + κηi(j)], i = 1, Nmon, j = 1, Nset, (35)

whereηi(j) represents a Gaussian random variable with mean0 and sigma1. The parame-
ter κ in Eq. (35) represents the relative error onσ̄i. From a number of tests performed in the
TT2/TT10 transfer line, it has been decided to useκ = 10−2 in the numerical simulations. As a
result of the application of Eq. (35),Nset sequences̄Sj = {σ̄i(j)}i=1,Nmon are generated. In the
numerical simulations presented in this paper,Nset = 5×104 has been used to have an accurate
reconstruction of the distribution of the measured optical parameters.

In Fig. 3 the results of such simulations are given: the distribution of the Twiss parame-
ters for the three-monitor method (shaded) as well as for the five-monitor approach are plotted.
Similarly, the distribution of the beam emittance is shown in Fig. 4. When a smaller number

Figure 3: Distribution of the horizontal Twiss parametersα (left) andβ (right) at the location of
the first monitor in TT2 as computed using the standard three-monitor method (shaded) or the
five-monitor method.

of monitors than those available is used to compute the optical parameters, it has to be decided
how to chose the best ones among the whole set. As far as the three-monitor method is con-
cerned, it has been decided to use the first three monitors installed in the TT2 transfer line. In
the case of the five-monitor approach, the choice has been based on the minimisation of the
functiontrB. This procedure allowed considerable improvement in the accuracy of the results.
No difference is found in the outcome of the numerical computations: the three distributions
presented in Figs. 3–4 are very similar as far as the overall shape, the mean value and the sigma
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are concerned. Similar results hold when the Twiss parameters are derived using the six-monitor
method.

In Fig. 5 results for the dispersion function and its derivative are presented. In this case,
the five-monitor method and the six-monitor method (shaded distribution) have been used.

Figure 4: Distribution of the horizontal beam emittanceε computed using the standard three-
monitor method (shaded) or the five-monitor method.

Figure 5: Distribution of the horizontal dispersionD (left) and dispersion derivativeD′ (right)
at the location of the first monitor in the TT2 line as computed using the five-monitor method
or the six-monitor method (shaded).

Of course, the approach based on the three-monitor method cannot be considered in this
comparison as it is based on the a-priori knowledge of the dispersion function value at the
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location of the various monitors.

Figure 6: Distribution of the beam momentum spreadδ (in units of10−3 as computed using the
six-monitor method.

The distributions ofD, D′ are somewhat different for the two approaches. The five-
monitor method generates distributions that resemble closely Gaussian distributions. This is
a direct consequence of the form of Eqs. (17). The six-monitor method, however, produces
skewed distributions with long tails. The explanation for this behaviour can be found by con-
sidering also the distribution of the beam’s momentum spread computed using the six-monitors
approach shown in Fig. 6. A careful analysis of Eqs. (22) shows that the method allows the direct
computation of the productDδ2 or D′δ2, therefore, any asymmetry in the distribution function
of δ2 propagates also toD, D′. In Table 1 the results obtained using the different methods are
summarised. The errors associated with the different reconstructed optical or beam parameters
are deduced from the sigmas of the distributions presented in Figs. 3–6.

A final test has been carried out, the three-, five- and six-monitor methods have been

Nominal values Three monitors Five Monitors Six monitors

α 0.98 0.97± 0.04 0.98± 0.05 0.98± 0.10
β 10.84 10.85± 0.15 10.86± 0.22 10.88± 0.40
D 2.45 – 2.45± 0.03 2.47± 0.17
D′ −0.25 – −0.25± 0.05 −0.26± 0.04
ε 0.25 0.248± 0.003 0.249± 0.004 0.244± 0.009
δ 1.0× 10−3 – – 0.99± 0.07

Table 1: Optical parameters for the transfer line optics used in the simulations as computed using
the various methods described in the previous Sections. The nominal values are also shown.
The errors associated with the reconstructed parameters are obtained from the distributions
presented in Figs. 3–6.

applied to a situation whereδ is about ten time smaller than the value used in previous compu-
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tations. Under this condition, the influence of the dispersion function on the beam size is highly
reduced thus making the task of deriving the whole set of five or six optical and beam parame-
ters rather hard.

The six-monitor method is the most sensible to the value ofδ. In fact, it turned out that
the actual location of the monitors in the TT2/TT10 line does not allow to apply the six-monitor
method to this case and it has been necessary to optimise their position. Only the first monitor
in the TT2 transfer line has been retained. The remaining five monitors have been repositioned
to minimise the value of the functiontrB. In Table 2 are summarised the results obtained with
the different methods together with the nominal value of the parameters used in the simulations.

The three-monitor method is almost unaffected by the drastic reduction ofδ. As far as

Nominal values Three monitors Five Monitors Six monitors

α 0.98 0.98± 0.03 0.98± 0.04 0.98± 0.05
β 10.84 10.84± 0.16 10.88± 0.16 10.86± 0.49
D 2.45 – 2.45± 0.77 2.03± 0.80
D′ −0.25 – −0.26± 0.14 −0.18± 0.25
ε 0.25 0.249± 0.003 0.248± 0.004 0.25± 0.15
δ 0.13× 10−3 – – 0.18± 0.07

Table 2: Optical parameters for the transfer line optics used in the simulations as computed
using the various methods described in the previous Sections for the smaller value of the beam’s
momentum spread. The errors associated with the reconstructed parameters are derived from the
distributions of the computed parameters.

the five-monitor method is concern, the main effect consists in an increase of the sigmas of the
distribution functions of the reconstructed parameters. For the six-monitor method, however,
both the mean values and the associated errors are affected. In particular, the average value of
δ is higher than the nominal value, thus inducing a bias in the values ofD, D′. This is a good
example of how the ‘best beam’ that fit experimental data does not always coincide with the
‘real beam’ as compensations between the various fit parameters can occur.

4 Conclusions
New techniques to compute the optical parameters in a transfer line from the knowledge

of Nmon beam profiles have been presented and discussed in detail. A general formula to eval-
uate the intrinsic accuracy of the various methods has been worked out. Furthermore, it has
been shown how the techniques presented in this paper can be used to design an optimal beam
monitoring system. The interesting point in these methods is that they allow the simultaneous
derivation of transverse and longitudinal optical functions without varying any machine param-
eter.

Numerical simulations of the transfer line joining the PS and the SPS, have been carried
out to validate the new techniques and to compare the accuracy of the new methods with that
of the standard approach based on three monitors. The Twiss parameters derived with the stan-
dard approach are in very good agreement with those obtained by using the five-monitor and
six-monitor methods. As far as the dispersion function and its derivative are concerned, the five-
monitor method allows to derive values in good agreement with the nominal ones. Furthermore,
it proved to be quite robust as it allowed to deriveD, D′ even whenδ is rather small and the
contribution to the betatronic beam size of the dispersion is very small.

The six-monitor method gives results in very good agreement with the standard and the
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five-monitor methods. However, it is more sensible to the actual value ofδ than the five-monitor
method as shown by the results of the numerical simulations.
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A Derivation of optical and beam parameters in circular machines
The five-monitor method derived in the text can be applied also to the case of a circular

machine in which one single monitor is available: the beam width is then measured at the same
azimuthal location by means of a non-destructive device. The transfer matrix between the first
and theith monitor is here given by a suitable power of the one-turn matrix. By using the optical
parameters of the circular machine, it is possible to write explicitly the one-turn map [8], namely

T =


C S ξ

C ′ S ′ ξ′

0 0 1


 (36)

whereC, S can be replaced with the well-known expressions

C = cos 2πQ + α sin 2πQ S = β sin 2πQ,

C ′ = −γ sin 2πQ S ′ = cos 2πQ− α sin 2πQ.

HereQ represents the tune of the machine andα, β, γ the nominal values of the Twiss param-
eters at the monitor location. The two quantitiesξ, ξ′ can be expressed in terms ofD, D′, the
values of the dispersion function and its derivative at the monitor location, by imposing that


D

D′

1


 =


C S ξ

C ′ S ′ ξ′

0 0 1





D

D′

1


 , (37)

which corresponds to the periodic property ofD andD′. The solution can also be expressed in
matrix form (

ξ
ξ′

)
= (I − T2×2)

(
D
D′

)
, (38)

whereT2×2 is the2× 2 sub-matrix ofT andI is the identity matrix.
In a circular machine, the matrixTi, expressing the beam dynamics between the first and

the ith monitor, is simply given byTi = T i (i.e. the transfer matrix overi consecutive turns).
Furthermore, it is possible to show that

T i =


Ci Si ξi

C ′
i S ′

i ξ′i
0 0 1


 , (39)

where

C = cos 2πiQ + α sin 2πiQ S = β sin 2πiQ,

C ′ = −γ sin 2πiQ S ′ = cos 2πiQ− α sin 2πiQ.

and (
ξi

ξ′i

)
=

(
I − T i

2×2

)(
D
D′

)
. (40)

The previous relations can be used to parametrise the matrixM in Eq. (16), used to com-
pute the optical parameters, hence allowing to derive an explicit expression for the determinant
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of M as a function of the nominal optical parameters and the number of turnsni between
measurementi andi + 1, namely

detM = −512 D2 β4 sin π n1 Q sin π n2 Q sin π n3 Q sin π n4 Q

sin π (n1 + n2) Q sin π (n2 + n3) Q sin π (n3 + n4) Q

sin π (n1 + n2 + n3) Q sin π (n2 + n3 + n4) Q sin π (n1 + n2 + n3 + n4) Q.

(41)

From Eq. (41) it is evident that in order forM to be non-singular, the value of the disper-
sion functionD must be different from zero and that the following relation must be fulfilled

(n1 + n2 + n3 + n4) Q 6= p ∀ ni ∈ N, ni > 0 and p ∈ Z. (42)

The free parametersni can be used to optimise the accuracy of the method.
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